딥러닝에서 사용되는 알고리즘
합성곱 신경망(Convolutional Neural Network, CNN)
합성곱 신경망(Convolutional Neural Network, CNN)은 최소한의 전처리(preprocess)를 사용하도록 설계된 다계층 퍼셉트론(multilayer perceptrons)의 한 종류이다. CNN은 하나 또는 여러개의 합성곱 계층과 그 위에 올려진 일반적인 인공 신경망 계층들로 이루어져 있으며, 가중치와 통합 계층(pooling layer)들을 추가로 활용한다. 이러한 구조 덕분에 CNN은 2차원 구조의 입력 데이터를 충분히 활용할 수 있다. 다른 딥 러닝 구조들과 비교해서, CNN은 영상, 음성 분야 모두에서 좋은 성능을 보여준다.
CNN은 또한 표준 역전달을 통해 훈련될 수 있다.
CNN은 다른 피드포워드 인공신경망 기법들보다 쉽게 훈련되는 편이고 적은 수의 매개변수를 사용한다는 이점이 있다.
최근 딥 러닝에서는 합성곱 심층 신뢰 신경망 (Convolutional Deep Belief Network, CDBN) 가 개발되었는데, 기존 CNN과 구조적으로 매우 비슷해서, 그림의 2차원 구조를 잘 이용할 수 있으며 그와 동시에 심층 신뢰 신경망 (Deep Belief Network, DBN)에서의 선훈련에 의한 장점도 취할 수 있다. CDBN은 다양한 영상과 신호 처리 기법에 사용될 수 있는 일반적인 구조를 제공하며 CIFAR 와 같은 표준 이미지 데이터에 대한 여러 벤치마크 결과에 사용되고 있다.
순환 신경망(Recurrent Neural Network, RNN)
순환 신경망은 인공신경망을 구성하는 유닛 사이의 연결이 Directed cycle을 구성하는 신경망을 말한다. 순환 신경망은 앞먹임 신경망과 달리, 임의의 입력을 처리하기 위해 신경망 내부의 메모리를 활용할 수 있다. 이러한 특성에 의해 순환 신경망은 필기체 인식(Handwriting recognition)과 같은 분야에 활용되고 있고, 높은 인식률을 나타낸다.
순환 신경망을 구성할 수 있는 구조에는 여러가지 방식이 사용되고 있다.
완전 순환망(Fully Recurrent Network), Hopfield Network, Elman Network, Echo state network(ESN), Long short term memory network(LSTM), Bi-directional RNN, Continuous-time RNN(CTRNN), Hierarchical RNN, Second Order RNN 등이 대표적인 예이다.
순환 신경망을 훈련(Training)시키기 위해 대표적으로 경사 하강법, Hessian Free Optimization, Global Optimization Methods 방식이 쓰이고 있다. 하지만 순환 신경망은 많은 수의 뉴런 유닛이나 많은 수의 입력 유닛이 있는 경우에 훈련이 쉽지 않은 스케일링 이슈를 가지고있다.